The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature. After washing the mixture with 10 mL of saturated sodium bicarbonate solution, the organic layer was separated, dried and distilled to give threo-2,3-bis(methylthio) butane as a colorless liquid $\left[2.69 \mathrm{~g}, 90 \%\right.$, bp $70-73^{\circ} \mathrm{C}(6$ $\mathrm{mm})] .^{11}$ A rubber septum was used in place of the gas inlet tube for less volatile alkenes.
trans-1,4-Bis(methylthio)- and -Bis(phenylthio)-2-butene. To a solution of sodium methoxide in methanol ($1 \mathrm{M}, 200 \mathrm{~mL}$, $0^{\circ} \mathrm{C}$) was added methanethiol ($9.6 \mathrm{~g}, 0.2 \mathrm{~mol}$) or benzenethiol ($22 \mathrm{~g}, 0.2 \mathrm{~mol}$). The temperature was raised briefly to $25^{\circ} \mathrm{C}$ and then cooled again to $0^{\circ} \mathrm{C}$. trans-1,4-Dichloro-2-butene $(12.5 \mathrm{~g}$, 0.1 mol) was added slowly to the stirred solution such that the temperature remained below $10^{\circ} \mathrm{C}$. Thereafter, the mixture was refluxed for 1 h , cooled, and poured into 1 L of ice-water. After extraction with ether ($100 \mathrm{~mL} \times 3$), the ether extract was dried and distilled to give a colorless oil of trans-1,4-bis(methyl-thio)-2-butene [$12.4 \mathrm{~g}, 85 \%$, bp $41-42{ }^{\circ} \mathrm{C}\left(0.15 \mathrm{~mm}\right.$), (lit. ${ }^{15}$ bp 115 ${ }^{\circ} \mathrm{C}(19 \mathrm{~mm})$)]: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.01\left(\mathrm{~s}, \mathrm{SCH}_{3}, 3 \mathrm{H}\right), 3.05\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, 2 H), 5.45 ($\mathrm{m}, \mathrm{CH}=1 \mathrm{H}$). With benzenethiol, a crystalline solid of trans-1,4-bis(phenylthio)-2-butene was obtained $\left[\mathrm{mp} 64-66^{\circ} \mathrm{C}\right.$ (lit. $\left.{ }^{16} \mathrm{mp} 76-77^{\circ} \mathrm{C}\right), 20 \mathrm{~g}, 74 \%$); NMR (CDCl_{3}) $\delta 3.43\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$, $2 \mathrm{H}), 5.56(\mathrm{~m}, \mathrm{CH}=, 1 \mathrm{H}), 7.20(\mathrm{~m}, \mathrm{Ph}, 5 \mathrm{H})$.

Methyl Phenyl Disulfide. Methyl disulfide ($9.4 \mathrm{~g}, 0.1 \mathrm{~mol}$) was converted to methanesulfenyl chloride by adding 7.1 g of chlorine at $-40^{\circ} \mathrm{C}$. The product, as a clear reddish orange solution, was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of benzenethiol ($26 \mathrm{~g}, 0.236$ mol) in 200 mL of dry methanol with 20 g of powdered calcium carbonate. The mixture was stirred for an additional 2 h at room temperature. Ice-water (500 mL) was added, and when gas evolution ceased, the mixture was extracted with ether ($100 \mathrm{~mL} \times$ 3), and the ether extracts were washed with $10 \% \mathrm{NaOH}$ and then water ($100 \mathrm{~mL} \times 2$), dried, and fractionally distilled to give 19.6 g of the product free of symmetrical disulfides $\left[63 \%, 60-61^{\circ} \mathrm{C}\right.$ $(0.2 \mathrm{~mm})]:$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.44\left(\mathrm{~s}, \mathrm{SCH}_{3}, 3 \mathrm{H}\right), 7.15-7.55(\mathrm{~m}$, $\mathrm{Ph}, 5 \mathrm{H}$).

Addition of Methyl Phenyl Disulfide to cis-2-Butene. To a cold solution of 10 mL each of dichloromethane and nitromethane were added cis-2-butene ($1.1 \mathrm{~g}, 20 \mathrm{mmol}$) and boron trifluoride dimethyl etherate (0.1 mL) as described previously. The mixture was cooled to $-10^{\circ} \mathrm{C}$, and methyl phenyl disulfide ($1.56 \mathrm{~g}, 10 \mathrm{mmol}$) in 5 mL of $1: 1$ solvent mixture was added slowly with stirring. The products were obtained as described previously and the composition determined by GLPC and NMR. Tabulated NMR data are available as supplementary material.

Acknowledgment. This work was supported in part by Grant GM27319 awarded by the Institute for General Medical Sciences, DHEW.

Supplementary Material Available: Table II, containing NMR assignments for all adducts (1 page). Ordering information is given on any current masthead page.
(16) Everhardus, R. H.; Peterse, A.; Vermeer, P.; Brandsma, L.; Arens, J. F. Recl. Trau. Chim. Pays-Bas 1974, 93, 90.

Unsymmetrically Disubstituted β-Cyclodextrins. 6A,6X-Dideoxy-6A-azido-6X-[(mesitylsulfonyl)oxy] Derivatives

Kahee Fujita,* Hatsuo Yamamura, and Taiji Imoto
Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

Received December 17, 1984

In the past decade, construction of artificial enzymes (or receptors) by chemical modification of cyclodextrins has been extensively studied. While monosubstitution of primary hydroxyl groups of cyclodextrins allowed simple

designing of enzymes (or receptors), ${ }^{1}$ transannular disulfonation (disulfonate capping) developed a new and quite interesting aspect of synthesis of symmetrically and specifically ($6 \mathrm{~A}, 6 \mathrm{C}$ or $6 \mathrm{~A}, 6 \mathrm{D}$) bifunctionalized enzyme (or receptor) mimics. ${ }^{1,2}$ Recently, we also developed convenient preparation and effective separation of $6 \mathrm{~A}, 6 \mathrm{~B}-$, $6 \mathrm{~A}, 6 \mathrm{C}$-, and 6A,6D-disulfonates of α - and β-cyclodextrins. ${ }^{3,4}$ However, more sophisticated artificial enzmes (or receptors) should possess two different functional groups at desirable positions. Strategy of preparation of these artificial enzymes (or receptors) may be divided into three types as shown in Scheme I, where X and Y are activated primary hydroxyls such as sulfonates and Z_{1} and Z_{2} are functional groups. Since the product composition of the type (1) reaction is statistical, particular association between Z_{1} and Z_{2} (neither between Z_{1} and Z_{1} nor between Z_{2} and Z_{2}) should be necessary for the formation of ($\mathrm{Z}_{1}, \mathrm{Z}_{2}$) in a composition more than 50% (statistical value). The type (2) reaction utilizing an unsymmetrically capped cyclodextrin (X-Y) has been reported by Tabushi. ${ }^{5}$ This elegant and ingenious method permitted predominant production of ($\mathrm{Z}_{1}, \mathrm{Z}_{2}$), although information was not given with respect to the relative positions of Z_{1} and Z_{2}.

We describe here a novel type (3) method which will permit isolation of pure $\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$ with respect to the relative positions of the substituents, $6 \mathrm{~A}, 6 \mathrm{~B}-, 6 \mathrm{~A}, 6 \mathrm{C}$-, or $6 \mathrm{~A}, 6 \mathrm{D}$ isomers. The regioisomeric mixture of 6A,6X-dideoxy-6A-azido-6X-[(mesitylsulfonyl)oxy]- β-cyclodextrins was prepared by the reaction of 6-deoxy-6-azido- β-cyclodextrin ${ }^{6}$ with mesitylenesulfonyl chloride in pyridine. After evaporation of pyridine, the crude mixture was applied on a reversed-phase column. After elution of water, a gradient elution of water-aqueous MeOH gave the recovered starting material (28.7%) and products 1 (11.2%), 2 (9.6%), and 3 (8.6%) (Figure 1). The products ($1-3$) were clearly separable from each other by reversed-phase HPLC (Figure 2A). The IR spectra of 1,2 , and 3 showed the absorptions of the azido ($2100 \mathrm{~cm}^{-1}$) and the sulfonate ($1190,1173,760$, and $648 \mathrm{~cm}^{-1}$) in addition to the ab-

[^0]

Figure 1. Reversed-phase column chromatography of the mixture obtained by the reaction of 6-deoxy-6-azido- β-cyclodextrin with mesitylenesulfonyl chloride. A gradient elution of water-aqueous MeOH was applied.

${ }^{\text {a }}$ (a) $\mathrm{MessCl} / \mathrm{py}$; (b) $\mathrm{NaN}_{3} / \mathrm{DMF} ;$ Mess $=2,4,6$ $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2}$.
sorptions characteristic to the cyclodextrin. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that 1,2 , or 3 was a monosulfonate. Moreover, the FABMS spectrum demonstrated that each compound was indeed the mesitylenesulfonated azidocyclodextrin. There are no significant differences in spectral data among 1-3. Therefore, the spectra are not useful for regiostructure determination of 1-3. Even if they were different from one another, the assignment would be still difficult since there is no accumulation of spectral data for such systems. The assignments of the regiochemistry of 1-3 were carried out as shown in Scheme II. The azido sufonates 1-3 were converted to the corresponding diazido derivatives 4-6 by the reaction with sodium azide, which were ascertained by the FABMS and IR spectra and TLC and reversed-phase HPLC, which can separate 4-6 as shown in Figure 2B. The azido derivatives (4-6) were assigned to 6A,6D-, 6A,6C-, and 6A,6B-isomers, respectively, by comparing the HPLC retention times of 4-6 with those of the corresponding authentic compounds which were prepared by the reaction of $6 \mathrm{~A}, 6 \mathrm{D}-, 6 \mathrm{~A}, 6 \mathrm{C}$-, and 6A,6B-ditosylates of β-cyclodextrin ${ }^{4}$ with sodium azide. Therefore, the relative position of the two substituents of 1,2 , or 3 is $6 \mathrm{~A}, 6 \mathrm{D}, 6 \mathrm{~A}, 6 \mathrm{C}$, or $6 \mathrm{~A}, 6 \mathrm{~B}$, respectively.
Thus, β-cyclodextrins substituted with two different kinds of functional groups including an amino group on

Figure 2. Reversed-phase HPLC of a mixture of 6A,6X-di-deoxy-6A-azido-6X-[(mesitylsulfonyl)oxy]- β-cyclodextrins 1-3 (A) and a mixture of $6 \mathrm{~A}, 6 \mathrm{X}$-dideoxy-6A,6X-diazido- β-cyclodextrins ${ }_{4-6}$ (B). A gradient elution of aqueous $\mathrm{CH}_{3} \mathrm{CN}$ was applied.
given positions of the primary hydroxyl side become now available through our method, since the azido can be easily reduced to an amino function and the sulfonyloxyl group is also convertible to various functional groups by nucleophilic substitution. However, since the sulfonation on the azidocyclodextrin is expected to show no regioselectivity, the isolated compound 1,2 , or 3 is most likely a mixture of $6 \mathrm{~A}, 6 \mathrm{D}$ and $6 \mathrm{~A}, 6 \mathrm{E}, 6 \mathrm{~A}, 6 \mathrm{C}$ and $6 \mathrm{~A}, 6 \mathrm{~F}$, or $6 \mathrm{~A}, 6 \mathrm{~B}$ and $6 \mathrm{~A}, 6 \mathrm{G}$ isomers, respectively.

Experimental Section

IR spectra were recorded with a Hitachi 215 grating infrared spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined with a JEOL FX-100 spectrometer (100 MHz). UV absorptions were obtained with a Hitachi Model 200-10 spectrophotometer. Fast atom bombardment mass (FABMS) spectra were recorded with a JEOL JMS DX-300/JMA 3500 data system. Thin-layer chromatography (TLC) was run with precoated silica gel plates (Merck, Art 5554). Spot detection was carried out by UV light and/or staining with 0.1% 1,3-dihydroxynaphthalene in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}(200 / 157 / 43 \mathrm{v} / \mathrm{v})$. An elution solvent of TLC was $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(7 / 7 / 5)$. Merck Lobar prepacked column (LiChroprep RP18 column, Size B, $25 \times 310 \mathrm{~mm}$ or LiChroprep RP8, Size A, $10 \times 240 \mathrm{~mm}$) was used for reversedphase column chromatography. High-performance liquid chromatography (HPLC) was performed analytically on a Hitachi 635A with a TSKgel ODS 120 A column ($4 \times 300 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Toyo Soda, Japan).

6A,6X-Dideoxy-6A-azido-6X-[(mesitylsulfonyl)oxy]- β-cyclodextrin (1-3). To a solution of 6 -deoxy- 6 -azido- β-cyclodextrin ${ }^{6}$ (250 mg) in dry pyridine (2 mL) was added mesitylenesulfonyl chloride (210 mg). The solution was stirred at room temperature for 9 h . The progress of reaction was monitored by TLC. The R_{f} value of the products (1-3) on TLC was 0.49 . The amount of the sulfonyl chloride was dependent on the dryness of the reagents. After water $(0.5 \mathrm{~mL})$ was added to the solution to stop the progress of reaction, the mixture was concentrated in vacuo. The residue was dissolved in 20% aqueous $\mathrm{EtOH}(8 \mathrm{~mL})$, filtered to remove the insoluble material, and chromatographed through a re-versed-phase column (Lobar column LiChroprep RP18 Size B). After elution of water (500 mL), a gradient elution of water (300 $\mathrm{mL})-30 \%$ aqueous $\mathrm{MeOH}(300 \mathrm{~mL}$) followed by a gradient elution of 30% aqueous $\mathrm{MeOH}(800 \mathrm{~mL})-80 \%$ aqueous $\mathrm{MeOH}(800 \mathrm{~mL})$ was applied. Each fraction was monitored by UV absorption at 230 ann 270 nm and by TLC. The fractions of recovered starting material, 1,2 , or 3 were collected and concentrated in vacuo. The residue was dissolved in a small amount of water and lyophilized: the recovered starting material, $43.1 \mathrm{mg}(28.7 \%) ; 1,19.4 \mathrm{mg}$ (11.2%) ; 2, 16.9% (9.7%); 3, $14.9 \mathrm{mg}(8.6 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) of $1-3$ are very similar to each other: $\delta 2.29$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 4.2-4.6(5 \mathrm{H}, \mathrm{OH}), 4.65-5.00$ ($7 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}$ of cyclodextrin), 5.5-6.6 ($14 \mathrm{H}, \mathrm{OH}$), $7.10(\mathrm{~s}, 2 \mathrm{H})$. The IR spectra (KBr) of $\mathbf{1 - 3}$ were also very similar to each other: 2100 $\left(\mathrm{N}_{3}\right), 1190,1173,760,648$ (sulfonate) cm^{-1}. FABMS: $m / z 1142$ ($\mathrm{M}+\mathrm{H}$), $1364(\mathrm{M}+\mathrm{Na})$.
Authentic 6A,6X-Dideoxy-6A,6X-diazido- β-cyclodextrin (4-6). A mixture of 6A,6B-dideoxy-6A,6B-bis(tosyloxy) $-\beta$ cyclodextrin ${ }^{4}(30 \mathrm{mg})$ and sodium azide (40 mg) in dry DMF (0.7 mL) was stirred at $70^{\circ} \mathrm{C}$ for 3 h . After evaporation of DMF in vacuo, the residue was dissolved in water (1 mL) and was applied on a reversed-phase column (Lobar column LiChroprep RP8 Size A). After elution of 10% aqueous $\mathrm{EtOH}(100 \mathrm{~mL})$, a gradient elution of 10% aqueous $\mathrm{EtOH}(200 \mathrm{~mL})-40 \%$ aqueous EtOH (200 mL) was used for the development. The fraction of the di-azido- β-cyclodextrin was easily detected by monitoring the UV absorption at 210 nm . The fractions of the diazido- β-cyclodextrin were collected and concentrated in vacuo to give a pasty solid, which was dissolved in water and lyophilized to give $6,18 \mathrm{mg}$ (73%). By the similar procedures, the $6 \mathrm{~A}, 6 \mathrm{C}$ - (5) $(9.7 \mathrm{mg}, 40 \%$) and 6A,6D- (4) ($14.3 \mathrm{mg}, 48 \%$) diazido isomers were prepared from the corresponding authentic ditosylates. The ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of 4-6 were very similar to each other: $\delta 5.0\left(7 \mathrm{H}, \mathrm{C}_{1} \mathrm{H}\right)$, $3.2-4.1$ (other protons). The IR spectra (KBr) spectra of 4-6 were also very similar to each other: $2100 \mathrm{~cm}^{-1}$. FABMS: $m / z 1185$ $(\mathrm{M}+\mathrm{H}), 1207(\mathrm{M}+\mathrm{Na})$.

Conversion of 6A,6X-Dideoxy-6A-azido-6X-[(mesitylsul-fonyl)oxy]- β-cyclodextrin to 6A,6X-Dideoxy-6A,6X-di-azido- β-cyclodextrin. A mixture of 6A, 6 X -dideoxy- 6 A -azido-6X-[(mesitylsulfonyl)oxy]- β-cyclodextrin (1,2 , or 3) (15 mg) and sodium azide (11 mg) in dry DMF (0.5 mL) was stirred at $60^{\circ} \mathrm{C}$ for 6 h . The progress of reaction was monitored by TLC. Only one product was detected by TLC ($R_{f} 0.36$). After evaporation of DMF in vacuo, the residue was dissolved in water (5 mL) and was adsorbed into a short reversed-phase column (SEP-PAK C_{18} cartridge, Waters Ltd.). After washing it with water (20 mL), 5% $(10 \mathrm{~mL}), 10 \%(10 \mathrm{~mL}), 15 \%(10 \mathrm{~mL})$, and then $20 \%(10 \mathrm{~mL})$ aqueous EtOH solutions were stepwise applied. Concentration in vacuo and lyophilization of the 10% and $15 \% \mathrm{EtOH}$ fractions gave 11 mg of $6 \mathrm{~A}, 6 \mathrm{X}$-dideoxy-6A,6X-diazido-6 β-cyclodextrin (4, 5 , or 6). This product showed the correct molecular weight in the FABMS spectrum and demonstrated the same IR spectrum, the same R_{f} value on TLC, and the same retention time on HPLC as those of the corresponding authentic diazido- β-cyclodextrin 4,5 , or 6 .

Acknowledgment. We are indebted to Japan Maise Products Co. Ltd. for the generous gift of β-cyclodextrin.

Registry No. 6A,6D-1, 98126-94-4; 6A,6E-1, 98126-95-5; 6A,6C-2, 98169-86-9; 6A,6F-2, 98126-96-6; 6A,6B-3, 98126-97-7; 6A,6G-3, 98126-98-8; 4, 98126-99-9; 4 (6A,6D-ditosylate), 95475-65-3; 5, 98169-67-6; 5 (6A,6C-ditosylate), 95509-72-1; 6, 80781-22-2; 6 (6A,6B-ditosylate), 95475-64-2; 6-deoxy-6-azido- β-cyclodextrin, 98169-85-8; mesitylenesulfonyl chloride, 773-64-8.

Crystal and Molecular Structure of anti-Sesquinorbornene ${ }^{1}$

Michael Gajhede, ${ }^{* 2 \mathrm{a}}$ Flemming S. Jørgensen, ${ }^{2 \mathrm{~b}}$
Karl R. Kopecky, ${ }^{2 c}$ William H. Watson, ${ }^{2 d}$ and
Ram P. Kashyap ${ }^{2 d}$
Department of Physical Chemistry, University of Copenhagen, The H. C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen \varnothing, Denmark, Department of Chemistry BC, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada, and Department of Chemistry, Texas Christian University, Fort Worth, Texas 79129

Received March 25, 1985

Since the recent preparation of the syn- and antisesquinorbornenes, 1^{3} and $2,{ }^{4}$ respectively, several studies on their molecular structure and features associated with their molecular structure have been reported. ${ }^{5-15}$ Theoretical calculations on the parent compound 1^{9-15} and X-ray structure analysis of several derivatives of syn-sesquinorbornene ${ }^{7-9}$ and syn-oxasesquinorbornene ${ }^{16}$ show that the syn isomer prefers a nonplanar, endo-bent arrangement around the double bond with the deviation from planarity being $12-22^{\circ}$. This conformation preference has been rationalized by diminished hyperconjugative destabilization by bending ${ }^{13,14}$ and/or relief of unfavorable torsional interactions by bending. ${ }^{15}$

The molecular structure of anti-sesquinorbornene (2) has been a matter of dispute. Molecular mechanics calculations indicate a preference for a conformation with a bent double bond,,$^{10-12}$ although Houk et al. ${ }^{15}$ have shown that this preference disappears by eliminating torsional contributions. X-ray structure analysis has been reported

[^1]
[^0]: (1) (a) Bender, M. L.; Komiyama, M. "Cyclodextrin Chemistry"; Springer Verlag: Berlin, 1978. (b) Tabushi, I. Acc. Chem Res. 1982, 15, 66. (c) Breslow, R. Science (Washington, D.C.) 1982, 218, 532, (d) Tabushi, I. Tetrahedron 1984, 40, 269.
 (2) (a) Tabushi, I.; Kuroda, Y.; Yokota, K.; Yuan, L. C. J. Am. Chem. Soc. 1981, 103, 711. (b) Tabushi, I.; Yuan, L. C. Ibid. 1981, 103, 3574. (c) Tabushi, I.; Shimokawa, K.; Shimizu, N.; Shirakata, H.; Fujita, K. Ibid. 1976, 98, 7855. (d) Breslow, R.; Bovy, P.; Hersh, C. L. Ibid. 1980, 102, 2115.
 (3) Fujita, K.; Matsunaga, A.; Imoto, T. J. Am. Chem. Soc. 1984, 106, 5740.
 (4) Fujita, K.; Matsunaga, A.; Imoto, T. Tetrahedron Lett. 1984, 48, 5533.
 (5) Tabushi, I.; Nabeshima, T.; Kitaguchi, H.; Yamamura, K. J. Am. Chem. Soc. 1982, 104, 2017.
 (6) Tsujihara, K.; Kurita, H.; Kawazu, M. Bull. Chem. Soc. Jpn. 1977, 50, 1567.

[^1]: (1) Systematic name: Tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodec-2(7)-ene. Previously named: $1,2,3,4,5,6,7,8$-Octahydro-1,4:5,8-dimethanonaphthalene.
 (2) (a) University of Copenhagen. (b) Royal Danish School of Pharmacy. (c) University of Alberta. (d) Texas Christian University.
 (3) (a) Paquette, L. A.; Carr, R. V. C.; Böhm, M. C.; Gleiter, R. J. Am. Chem. Soc. 1980, 102, 1186. (b) Paquette, L. A.; Carr, R. V. C. J. Am. Chem. Soc. 1980, 102, 7553.
 (4) Bartlett, P. A.; Blankency, A. J.; Kimura, M.; Watson, W. H. J. Am. Chem. Soc. 1980, 102, 1383.
 (5) Watson, W. H. "Stereochemistry and Reactivity of Systems Containing π Electrons"; Verlag Chemie International: Deerfield Beach, FL, 1983.
 (6) (a) Bartlett, P. D.; Roof, A. A. M.; Winter, W. J. J. Am. Chem. Soc. 1981, 103, 6520. (b) Paquette, L. A.; Kravetz, T. M.; Böhm, M. C.; Gleiter, R.J. Org. Chem. 1983, 48, 1250. (c) Paquette, L. A.; Charumilind, P.; Kravetz, T. M.; Böhm, M. C.; Gleiter, R. J. Am. Chem. Soc. 1983, 105 , 3126. (d) Paquette, L. A.; Schaefer, A. G.; Blount, J. F. J. Am. Chem. Soc. 1983, 105, 3642. (e) Bartlett, P. D.; Roof, A. A. M.; Subramanyam, R.; Winter, W. J. J. Org. Chem. 1984, 49, 1875. (f) Paquette, L. A.; Hsu, L.-Y.; Gallucci, J. C.; Korp, J. D.; Bernal, I.; Kravetz, T. M.; Hathaway, S. J. J. Am. Chem. Soc. 1984, 106, 5743. (g) Kashyap, R. P.; Watson, W. H.; Wu, C.; Bartlett, P. D. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1984, C40, 1851.
 (7) Watson, W. H.; Galloy, J.; Bartlett, P. D.; Roof, A. A. M. J. Am. Chem. Soc. 1981, 103, 2022.
 (8) (a) Paquette, L. A.; Hayes, P. C.; Charumilind, P.; Böhm, M. C.; Gleiter, R.; Blount, J. F. J. Am. Chem. Soc. 1983, 105, 3148. (b) Paquette, L. A.; Charumilind, P.; Böhm, M. C.; Gleiter, R.; Bass, L. S.; Clardy, J. J. Am. Chem. Soc. 1983, 105, 3136.
 (9) Ermer, O.; Bödecker, C.-D. Helv. Chim. Acta 1983, 66, 943.
 (10) Jørgensen, F. S. Tetrahedron Lett. 1983, 24, 5289.
 (11) Ermer, O. "Aspekte von Kraftfeldrechnungen"; Wolfgang Baur Verlag: München, 1981.
 (12) Johnson, C. A. J. Chem. Soc., Chem. Commun. 1983, 1135.
 (13) Gleiter, R.; Spanget-Larsen, J. Tetrahedron Lett. 1982, 23, 927.
 (14) Spanget-Larsen, J.; Gleiter, R. Tetrahedron 1983, 39, 3345 and references therein.
 (15) Houk, K. N.; Rondan, N. G.; Brown, F. K.; Jorgensen, W. L.; Madura, J. D.; Spellmeyer, D. C. J. Am. Chem. Soc. 1983, 105, 5980 and references therein.
 (16) (a) Hagenbuch, J. D.; Vogel, P.; Pinkerton, A. A.; Schwarzenbach, D. Helv. Chim. Acta 1981, 64, 1818. (b) Watson, W. H.; Galloy, J.; Grossier, D. A.; Bartlett, P. D.; Combs, F. L. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1984, C40, 1050.

